

Understanding User Generated Data

Tieyun Qian School of Computer Science, Wuhan University

Email: qty@whu.edu.cn

Outline User Generated Data

An overview on Sentiment Analysis

An overview on Recommender Systems

Our Work

Outline User Generated Data

An overview on Sentiment Analysis

An overview on Recommender Systems

Our Work

User Generated Data

User generated content: explicit

- > Texts
- Pictures
- > Videos

Web2.0: User receiving data

User generating data.

▶

User generated data: both explicit and implicit

- Behaviors
- Interactions
- ➢ Users' relations
- ▶

User Generated Data

In this talk, I will focus on:

- Explicit texts
- > Sentiment analysis

- I will also focus on:
- Implicit interactions
- Recommender systems

Hozie Lvs VIP

★★★★ □ □味:3 环境:3 服务:3

☞滋补鸳鸯锅: 辣汤算清油火锅,点得中辣,有一丢丢辣吧,吃起来还是蛮舒服的。 白汤挺鲜,有香菇、金针菇和番茄, 还有当归的特殊味道。

☞虾滑:品质.....

2/0 2/10/07

10-16 祖传骨龙老火锅 团购点评

更多 ~

赞(5) 回应(2) 收藏 举报

It is important to understand user generated data!

- For sellers: sales promotion, and quality improvement
- For buyers: comparison and analysis before making decision
- For government: public sentiment monitoring
- For marketing: financial analysis
- ▶

Outline User Generated Data

An overview on Sentiment Analysis

An overview on Recommender Systems

Our Work

An overview on Sentiment Analysis

SA: automatically detect the polarity of the texts

- document

Granularity

sentence

- aspect -

Application: more detailed and through analysis

Technique: model the semantic relation between the aspect and sentence

An overview on Sentiment Analysis

Two types of scenarios:

- Aspect term sentiment analysis (ATSA)
 to predict the polarity of an entity in the sentence
- Aspect category sentiment analysis (ACSA)
 to predict the polarity of an predefined aspect category

A mix of students and area residents crowd into this narrow, barely there space for its quick, tasty treats at dirt-cheap prices.

> ATSA

space: negative, treats: positive, prices: positive

> ACSA

food: positive, price: positive, ambience: negative

Main Problems in ABSA

- Data labeling is extremely expensive in ABSA
- Hard to train high-quality embeddings for the terms with low frequency
- Hard to locate the aspect category in the sentence

Outline User Generated Data

An overview on Sentiment Analysis

An overview on Recommender Systems

Our Work

An overview on Recommender Systems

- Traditional recommender systems
- Sequential recommender systems (SRS) \checkmark
- Session based sequential recommender systems

Main Problems in SRS

- Modeling long term interests
- Modeling short term interests
- Dealing with cold start issues

Outline User Generated Data

An overview on Sentiment Analysis

An overview on Recommender Systems

Our Work

- Recommender systems
- User profiling
- Representation learning

Transfer Capsule Network for Aspect Level Sentiment Classification

Zhuang Chen, Tieyun Qian* School of Computer Science, WuHan University, China {zhchen18, qty}@whu.edu.cn

> Published at ACL 2019 (Research Long Paper)

TransCap - Motivations(1/17)

- The lack of labeled data is a major obstacle in ASC. Publicly available datasets for ASC often contain limited number of training samples.
- Document-level labeled data like reviews are easily accessible from online websites such as Yelp and Amazon. The accompanying rating scores can naturally serve as the sentiment labels.
- The document-level data contain useful sentiment knowledge for analysis on aspect level data since they may share many linguistic and semantic patterns.

TransCap - Architecture_(2/17)

Definitions

- ► T_A : Aspect-level sentiment classification (ASC).
- ► T_D: Document-level sentiment classification (DSC).
- TransCap: Improve T_A with transferred knowledge from T_D .

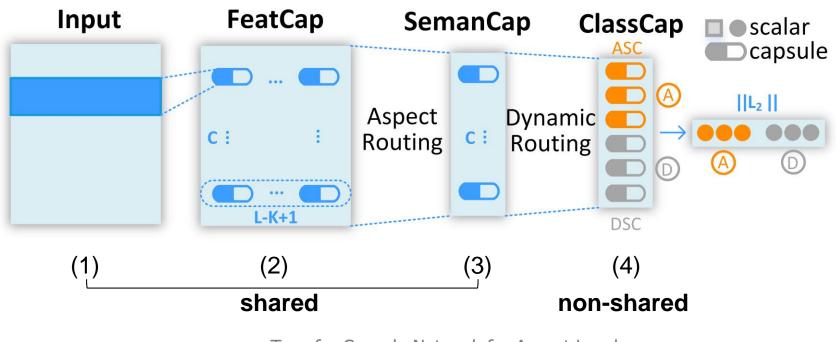
TransCap - Architecture_(3/17)

Preliminary

- CapsNet : CapsNet is first proposed for image classification in computer vision.
- ► Applied to NLP tasks : text classification, relation extraction...
- Why we use capsules : encapsulated features, separate classes, dynamic routing.

TransCap - Architecture_(4/17)

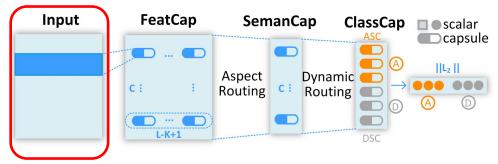
TransCap Overview



TransCap - Architecture_(5/17)

(1) Input Layer (shared)

• Look-up layer $\{e_1, ..., e_a, ..., e_L\} \in \mathbb{R}^{d_w \times L}$

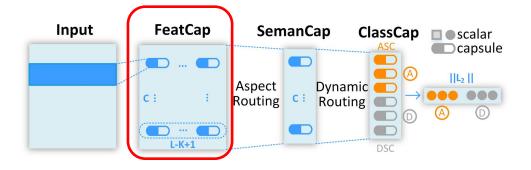


Position Information $\{l_1, ..., l_a, ..., l_L\} \in \mathbb{R}^{d_l \times L} \ \boldsymbol{x_i} = (\boldsymbol{e_i} \oplus \boldsymbol{l_i})$

Sentence Embedding $\mathbf{X} = \{ \boldsymbol{x_1}, ..., \boldsymbol{x_L} \} \in \mathbb{R}^{d_h \times L}$

TransCap - Architecture_(6/17)

- (2) Feature Capsule Layer (shared)
- Filter Group $\mathbf{F} \in \mathbb{R}^{d_p \times (d_h \times K)}$



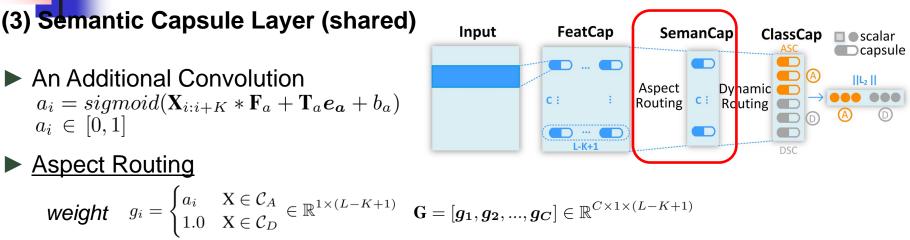
- Multiple Convolution Operations $r_i = \mathbf{X}_{i:i+K} * \mathbf{F} + b$
- Generated Feature Capsules (<u>1</u> category of semantic meaning) $r \in \mathbb{R}^{d_p \times (L-K+1)}$
- Repeat for Multiple Channels (<u>C</u> categories of semantic meaning)

 $\mathbf{R} = [\mathbf{r_1}, \mathbf{r_2}, ..., \mathbf{r_C}] \in \mathbb{R}^{C \times d_p \times (L-K+1)}$

Transfer Capsule Network for Aspect Level Sentiment Classification (ACL2019)

2019/12/15

TransCap - Architecture(7/17)



routing $\mathbf{P} = \mathbf{R} \odot \mathbf{G} \in \mathbb{R}^{C \times d_p \times (L-K+1)}$

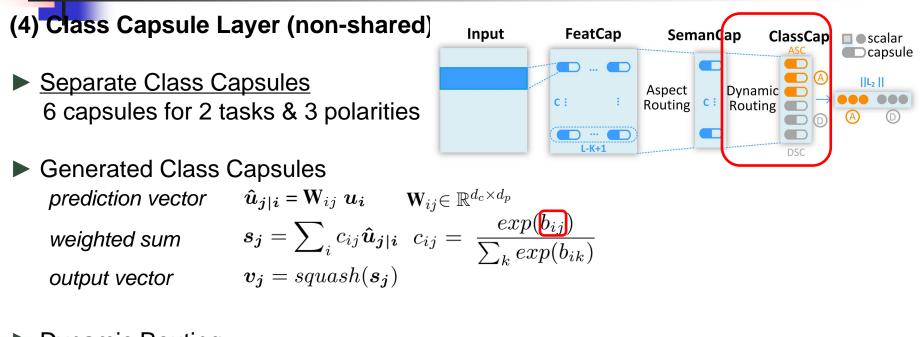
► Generated Semantic Capsules (<u>C</u> categories of semantic meaning) condensation $\mathbf{U} = \max_{t=1}^{C \times d_p} \mathbf{P}_t \in \mathbb{R}^{C \times d_p}$ $\boldsymbol{u}_i \leftarrow \frac{\|\boldsymbol{u}_i\|^2}{1 + \|\boldsymbol{u}_i\|^2} \frac{\boldsymbol{u}_i}{\|\boldsymbol{u}_i\|}$

Transfer Capsule Network for Aspect Level

Sentiment Classification (ACL2019)

24

TransCap - Architecture(8/17)



• Dynamic Routing $a_{ij} = \hat{u}_{j|i} \cdot v_j$ $b_{ij} \leftarrow b_{ij} + a_{ij}$

25

TransCap - Architecture_(9/17)

Training Procedure

- ► Data from T_D and T_A take turns to train TransCap model.
- Layer(1)(2)(3) transfer knowledge from T_D to T_A, layer(4) avoids mutual disturbance.

Loss Function *Loss Function each polarity* $\mathcal{L}_{j} = Y_{j}max(0, m^{+} - \|\boldsymbol{v}_{j}\|)^{2} + \lambda(1 - Y_{j})max(0, \|\boldsymbol{v}_{j}\| - m^{-})^{2}$ *single task* $\mathcal{L}_{S} = \sum_{j=1}^{J} \mathcal{L}_{j}$ *final loss* $\mathcal{L} = \mathcal{L}_{A} + \gamma \mathcal{L}_{D}$

TransCap - Experiments (10/17)

Datasets for T_A

- SemEval 2014 Task 4 : Restaurant & Laptop
- ▶ 80% for training, 20% for development

Datasets for T_D

- ▶ <u>Yelp, Amazon and Twitter</u>
- ► 30,000 balanced samples, all for training
- <3 : negative, =3 : neutral, >3 : positive (Yelp, Amazon)

Dataset Combinations

- {Y,A} : {Restaurant+Yelp, Laptop+Amazon}
- {T,T} : {Restaurant+<u>T</u>witter, Laptop+<u>T</u>witter}

Relevant but Imprecise Precise but Irrelevant

Task	Dataset	Туре	Pos.	Neu.	Neg.
	Restaurant	train	2164	633	805
$\overline{\tau}$	Restaurant	test	728	196	196
\mathcal{T}_A	Laptop	train	987	460	866
	Laptop	test	341	169	128
	Yelp	train	10k	10k	10k
\mathcal{T}_D	Amazon	train	10k	10k	10k
_	Twitter	train	10k	10k	10k

2019/12/15

TransCap - Experiments (11/17)

Results

- Averaged results over 5 runs with random initialization.
- TransCap outperforms all baselines.
- \blacktriangleright {Y,A} and {T,T} achieve similar results.

	Model	Resta	Restaurant		Laptop	
	WIOUCI	Acc.	F1	Acc.	F1	
M1	ATAE-LSTM	78.38	66.36	69.12	63.24	
M2	IAN	78.71	67.71	69.56	63.72	
M3	AF-LSTM(CONV)	76.46	65.54	69.97	63.70	
M4	AF-LSTM(CORR)	75.96	64.41	69.78	63.38	
M5	PBAN	78.62	67.45	71.98	66.91	
M6	MemNN	77.69	67.53	68.86	62.60	
M7	RAM	78.41	68.52	<u>72.16</u>	66.97	
M8	CEA	78.44	66.78	70.52	64.52	
M9	DAuM	77.91	66.47	70.36	65.86	
M10	IARM	77.73	66.66	68.63	63.30	
M11	PRET+MULT	78.73	68.63	71.91	<u>68.79</u>	
M12	GCAE	76.09	63.29	68.72	63.32	
M13	TransCap{S}	78.84	69.70	72.65	68.77	
M14	TransCap{Y,A}	79.55	71.41	73.51	69.81	
M15	TransCap{T,T}	79.29	70.85	73.87	70.10	

Transfer Capsule Network for Aspect Level Sentiment Classification (ACL2019)

27

28

TransCap - Experiments (12/17)

Ablation Study

- "- A": remove Aspect routing
- "- S": remove Semantic capsules
- "- D": remove Dynamic routing

_	Input		FeatCap		Seman	Сар		-	scalar
			D : : L-K+1	D Asr Rou	ect ting c:	Dynam Routir	nic 🛑	\sim	2 II
		Resta	urant			Lap	otop		
	{Y	,A}	{T,	T}	{Y,	,A}	{T,	,T}	
	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	
Ori.	79.55	71.41	79.29	70.85	73.51	69.81	73.87	70.10	
- A.	3.75↓	6.49 ↓	2.63 ↓	3.95↓	2.98↓	5.34↓	3.34↓	3.80 ↓	
- S.	4.01 ↓	5.14↓	1.45↓	2.08↓	2.35↓	3.64↓	2.40↓	2.15↓	
- D.	2.80↓	4.06↓	0.54↓	1.01↓	3.29↓	6.03↓	1.14↓	1.75↓	

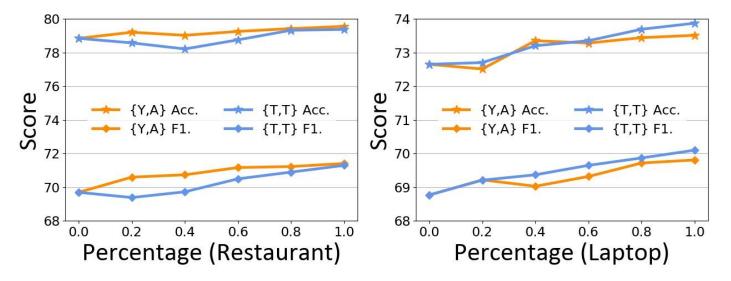
Transfer Capsule Network for Aspect Level Sentiment Classification (ACL2019)

2019/12/15

TransCap - Experiments (13/17)

Parameter Analysis

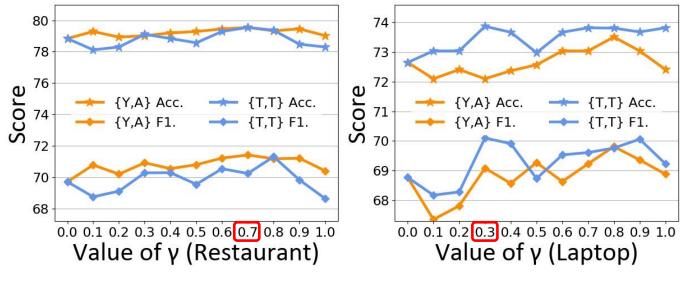
Influence of Auxiliary Corpus Size



TransCap - Experiments (14/17)

Parameter Analysis

Effects of Balance Factor γ



Transfer Capsule Network for Aspect Level Sentiment Classification (ACL2019)

2019/12/15

31

TransCap - Experiments (15/17)

Case Study

Part 1 : What does TransCap transfer?

test sample (TransCap \checkmark Others \times)

1. "It has so much more speed and the [screen]_{pos} is very sharp."

"sharp" is a multi-polarity word

- 2. "Once open, the [leading edge]_{neg} is razor sharp."
- 3. "[Graphics]_{pos} are clean and sharp, internet interfaces are seamless."
- The training set in Laptop contains only 8 samples including "sharp" with 5 of them are labeled as negative.
- Amazon dataset contains 294 samples where "sharp" co-occurs with lots of different contexts.

Transfer Capsule Network for Aspect Level Sentiment Classification (ACL2019)

2019/12/15

TransCap - Experiments (16/17)

Case Study

Part 2 : How does TransCap make decisions?

test sample

1. "Great [food]_{pos} but the [service]_{neg} is dreadful !"

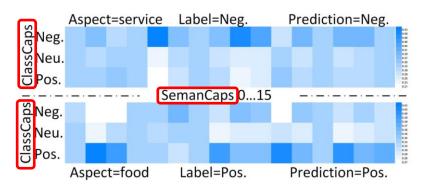


Figure. Visualization of coupling coefficients c_{ij} after dynamic routing.

TransCap - Experiments (17/17)

Case Study

- ► Part 3 : Can TransCap handle complicated patterns? test sample (TransCap ✓ Others ×)
 - 1. "The [staff]_{neg} should be a bit more friendly."
 - An euphemistic negative review towards the aspect [staff].
 - TransCap generates and transfers sentence-level knowledge.

auxiliary sample from Yelp

2. "The pro-shop staff should be more polite when answering the phone...]_{neg}"

Transfer Capsule Network for Aspect Level Sentiment Classification (ACL2019)

33

Aspect Aware Learning for Aspect Category Sentiment Analysis

Peisong Zhu, Zhuang Chen, Haojie Zheng, Tieyun Qian* School of Computer Science, WuHan University, China {zhups24, zhchen18, zhenghaojie, qty}@whu.edu.cn

Published at TKDD 2019

Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

2019/12/15

AAL - Motivations_(1/11)

- For category-based ASC, 1) the first challenge is to locate the exact position of the aspect category, 2) and the second is to correlate opinion words with different categories in one sentence.
- Categories have specific opinion words.

delicious	\rightarrow	food
expensive	\rightarrow	price
quiet	\rightarrow	ambience

great	0.04
food	0.03
but	0.01
the	0.01
service	0.01
was	0.01
dreadful	0.80
!	0.09

Category : service Label : Negative Prediction : Negative

great	0.07
food	0.04
but	0.02
the	0.01
service	0.01
was	0.02
dreadful	0.72
!	0.11

Category : food Label : Positive Prediction : Negative

The fish is delicious.

Great food but the service is dreadful.

2019/12/15

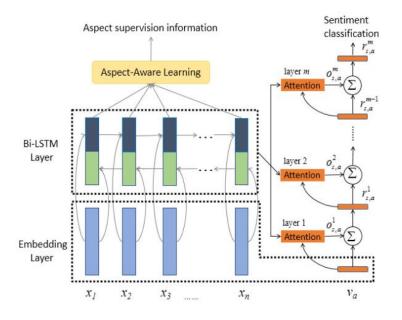
Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

AAL - Architecture_(2/11)

AAL Overview

We introduce additional supervision (Aspect-aware learning, AAL) to help correlate contexts with given aspect categories.

- AAL-LEX at word level
- AAL-SS at sentence level



Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

AAL - Architecture_(3/11)

(1) Input Layer

Look-up layer initialized by Glove

(2) Task 1 - Sentiment Prediction

 $o_{s,a}^m = \sum_{i=1}^m h_i \beta_{i,a}^m$

Bi-LSTM

Attention

Attention
Aggregation
Aggregation

$$\beta_{i,a}^{m} = softmax(tanh(W_{s}[h_{i}, r_{s,a}^{m-1}] + b_{s})),$$

$$r_{s,a}^{m} = o_{s,a}^{m} + r_{s,a}^{m-1}$$

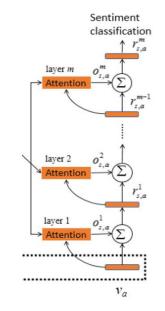
Prediction $\hat{p}(c|S, a) = softmax(W_c r_{s,a}^m + b_c)$

Task1 loss

$$L_{senti} = -\sum_{(S,a)\in T} \sum_{c\in C} p(c|S,a) \cdot \hat{p}(c|S,a)$$

stack to multiple layers...

Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)



AAL - Architecture_(4/11)

(3) Task 2 - Category Prediction

AAL-LEX at word level

Co-occurrence prob

Normalization

Task2 loss

 $p(a|w) = \frac{exp(PMI(w, a))}{\sum_{j=1}^{|A|} exp(PMI(w, a_j))}$

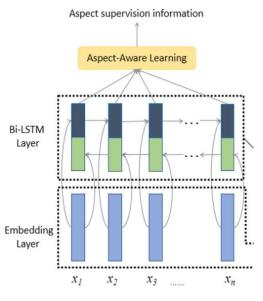
 $PMI(w, a) = log \frac{N(w, a) \times N(S)}{N(w) \times N(a)}$

 $\hat{p}(a|w) = softmax(W_ah + b_a)$

$$L_{asplex} = -\sum_{S \in T} \sum_{w \in S} \sum_{a \in A} p(a|w) \cdot log\hat{p}(a|w)$$

Final loss

 $L_{aallex} = (1 - \gamma_1)L_{senti} + \gamma_1 L_{asplex}$



Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

AAL - Architecture_(5/11)

(3) Task 2 - Category Prediction

AAL-SS at sentence level

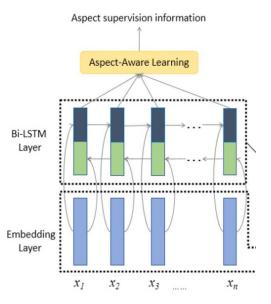
- Attention&aggregation
- Category prob
- Task2 loss

 $M = tanh(W_hH + b_h),$ $\alpha = softmax(u^TM), r_a = H\alpha^T$ $\hat{p}(a|S) = \sigma(W_ar_a + b_a)$

$$L_{aspss} = -\sum_{S \in T} \sum_{a \in A} y(S, a) \cdot \hat{p}(a|S)$$

Final loss

 $L_{aalss} = (1 - \gamma_2)L_{senti} + \gamma_2 L_{aspss}$



Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

40

AAL - Experiments (6/11)

Datasets

SemEval 2014, SemEval 2015, SemEval 2016

Data	Aspect	Posi	tive	Nega	tive	Netu	ıral
Data	Азресс	Train	Test	Train	Test	Train	Test
	food	867	302	209	69	90	31
	price	179	51	115	28	10	1
Restaurant	service	324	101	218	63	20	3
-2014	ambience	263	76	98	21	23	8
	anecdotes/miscellaneous	546	127	199	41	357	51
	Total	2179	657	839	222	500	94
	general	366	187	154	71	6	15
	price	40	35	25	5	22	17
	quality	110	55	266	60	10	4
	operation_performance	154	82	111	76	9	5
Laptop	usability	106	32	42	26	10	11
-2015	design_features	142	65	63	39	32	16
	portability	36	5	8	2	0	1
	connectivity	17	6	15	15	0	3
	miscellaneous	70	43	33	21	12	5
	Total	1041	513	717	315	101	77

	service#general	153	40	95	110	7	5
	food#quality	328	153	95	59	13	10
	restaurant#general	217	93	47	50	5	2
	drinks#style_options	23	4	1	2	0	0
	drinks#prices	11	2	4	3	0	0
	restaurant#prices	29	6	14	28	5	1
Restaurant	ambience#general	127	45	22	17	8	6
-2015	food#style_options	56	19	23	15	5	4
	restaurant#miscellaneous	41	19	17	12	3	7
	food#prices	25	8	22	19	1	2
	drinks#quality	31	7	1	4	1	1
	location#general	17	4	2	0	1	4
	food#general	0	0	1	0	0	0
	Total	1058	400	344	319	49	42
	restaurant#general	312	107	100	34	8	1
	service#general	194	66	206	70	12	7
	food#quality	480	186	153	24	23	12
	food#style_options	76	25	41	14	9	8
	drinks#style_options	27	11	3	1	0	0
	drinks#prices	13	0	7	3	0	0
Restaurant	restaurant#prices	34	6	40	13	6	2
-2016	restaurant#miscellaneous	57	16	27	13	13	4
	ambience#general	171	52	34	1	15	3
	food#prices	36	6	44	13	1	3
	location#general	21	11	1	0	6	2
	drinks#quality	39	20	5	1	2	0
	Total	1460	506	661	187	95	42

Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

AAL - Experiments (7/11)

Results

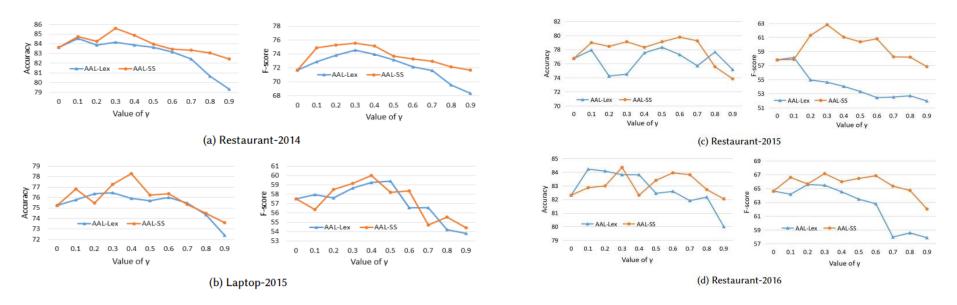
Method		Restau	rant-2014	1		Lapto	p-2015		[Method		Restau	ant-2015	5		Restau	rant-2010	5
Method	Acc.	Pre.	Rec.	F-score	Acc.	Pre.	Rec.	F-score		Method	Acc.	Pre.	Rec.	F-score	Acc.	Pre.	Rec.	F-score
AE-LSTM	81.40	71.78	65.22	67.63	74.39	56.94	55.66	54.73	[AE-LSTM	76.08	52.39	52.52	51.42	80.95	62.62	58.74	58.25
ATAE-LSTM	82.32	73.95	70.45	71.96	74.50	56.42	55.77	55.60	[ATAE-LSTM	76.87	51.13	54.34	52.61	81.09	71.09	55.65	58.86
Tensor DyMemNN	80.99	73.22	65.04	68.10	75.66	60.88	55.12	53.47		Tensor DyMemNN	78.58	59.59	55.58	55.08	82.99	76.01	62.14	63.45
Holo DyMemNN	80.37	72.00	67.76	69.62	76.08	66.57	55.37	53.05		Holo DyMemNN	77.92	52.16	54.39	53.08	82.59	69.53	58.23	59.93
CEA	82.94	73.23	69.01	70.81	74.50	59.35	55.82	56.51	[CEA	78.19	66.73	58.00	59.36	82.72	77.66	60.26	62.04
GCAE	81.09	69.93	65.88	67.61	75.03	60.79	59.80	59.96	[GCAE	77.53	60.93	57.42	58.22	82.59	72.26	61.32	61.86
DAuM	81.50	75.51	64.66	67.92	76.19	50.00	54.63	52.21	[DAuM	78.98	67.87	57.98	59.01	81.36	66.58	64.09	63.95
AF-LSTM (CORR)	82.01	74.83	71.24	72.01	76.19	49.93	54.87	52.26	[AF-LSTM (CORR)	77.40	51.55	54.25	52.84	83.27	71.17	61.31	62.20
AF-LSTM (CONV)	82.22	72.41	74.63	73.32	76.29	50.04	54.77	52.29	[AF-LSTM (CONV)	76.61	51.84	53.18	52.01	81.90	69.07	59.14	61.29
AAL-No	83.63	71.25	72.22	71.67	75.17	60.34	56.26	57.61	[AAL-No	76.74	63.55	56.64	57.81	82.31	65.88	64.27	64.62
AAL-LEX	84.17	75.25	73.96	74.57	75.87	62.18	58.14	59.25	[AAL-LEX	77.92	63.59	57.32	58.14	84.08	80.00	64.06	65.56
AAL-SS	85.61	78.03	73.71	75.54	78.29	67.75	59.82	60.00	[AAL-SS	79.11	70.44	60.61	62.80	84.35	77.68	64.64	67.14

Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

AAL - Experiments (8/11)

Parameter Analysis

Effects of Balance Factor



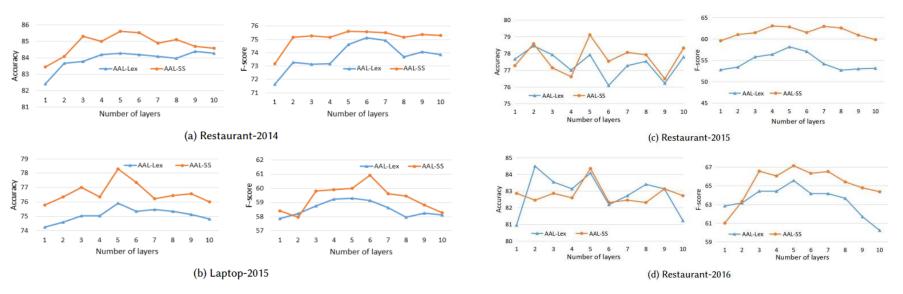
Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

42

AAL - Experiments (9/11)

Parameter Analysis

Effects of Layer Number



Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

AAL - Experiments (10/11)

Case Study

Aspect Lexicon

Table 4. Aspect Lexicon on Restaurant-2014

Aspect Category	Top-10 aspect terms with the highest PMI				
food	tasted, melted, burnt, roast, grilled, oily,				
1000	shredded, martini, crispy, egg				
price	inexpensive, reasonably, \$, free, pricey,				
price	priced, cost, prices, price, reasonable				
service	server, servers, smile, courteous, ignored,				
Service	greeted, helpful, manager, phone, asked,				
ambience	outdoor, paris, sleek, scene, music, cramped,				
ambience	laid-back, romantic, cozy, comfortable,				
anecdote/miscellaneous	anniversary, stumbled, reading, based, month,				
anecuote/miscellaneous	somewhere, celebrate, opened, katz, located				

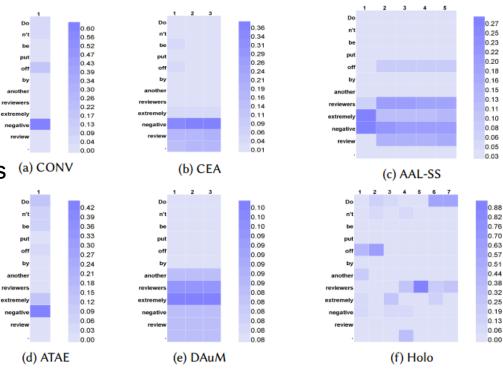
Table 5. Aspect Lexicon on Laptop-2015

general gift, worst, loved, products, pleased, recommended, friends, hate, happy, stars price expensive, shipping, paid, price, cost, spent, \$, worth, deal, money, fixed quality crap, defective, year, customer, told, loud, waited, piece, hot, quiet operation performance freezes, hrs, seconds, loads, flawlesslym, freaking, runs, applications, stopped, blue	Aspect Category	Top-10 aspect terms with the highest PMI
general recommended, friends, hate, happy, stars price expensive, shipping, paid, price, cost, spent, \$, worth, deal, money, fixed quality crap, defective, year, customer, told, loud, waited, piece, hot, quiet operation performance freezes, hrs, seconds, loads, flawlesslym, freaking, runs, applications, stopped, blue	Tispeet category	
price expensive, shipping, paid, price, cost, spent, \$, worth, deal, money, fixed quality crap, defective, year, customer, told, loud, waited, piece, hot, quiet operation performance freezes, hrs, seconds, loads, flawlesslym, freaking, runs, applications, stopped, blue	general	gift, worst, loved, products, pleased,
price spent, \$, worth, deal, money, fixed quality crap, defective, year, customer, told, loud, waited, piece, hot, quiet operation performance freezes, hrs, seconds, loads, flawlesslym, freaking, runs, applications, stopped, blue navigate curve	general	recommended, friends, hate, happy, stars
quality crap, defective, year, customer, told, loud, waited, piece, hot, quiet operation performance freezes, hrs, seconds, loads, flawlesslym, freaking, runs, applications, stopped, blue		expensive, shipping, paid, price, cost,
quanty loud, waited, piece, hot, quiet operation performance freezes, hrs, seconds, loads, flawlesslym, freaking, runs, applications, stopped, blue navigate curve	price	spent, \$, worth, deal, money, fixed
operation performance freezes, hrs, seconds, loads, flawlesslym, freaking, runs, applications, stopped, blue	quality	crap, defective, year, customer, told,
operation performance freaking, runs, applications, stopped, blue	quanty	loud, waited, piece, hot, quiet
navigate curve learning friendly learn		freezes, hrs, seconds, loads, flawlesslym,
navigate, curve, learning, friendly, learn,	operation performance	freaking, runs, applications, stopped, blue
	usability	navigate, curve, learning, friendly, learn,
switch, ease, window, user, os	usability	switch, ease, window, user, os
design features offers, sleek, feature, ram, sized,	design features	offers, sleek, feature, ram, sized,
design features place, design, features, allow, ports	designiteatures	place, design, features, allow, ports
travel, portability, carry, portable, meets,	nortability	travel, portability, carry, portable, meets,
portability durable, student, fit, business, sit	portability	durable, student, fit, business, sit
connectivity wifi, network, wireless, ethernet, port,	connectivity	wifi, network, wireless, ethernet, port,
connection, connect, plugged, stay, camera	connectivity	connection, connect, plugged, stay, camera
miscellaneous media, word, handle, facebook, microsoft,	miscellaneous	media, word, handle, facebook, microsoft,
basic, games, gaming, stuff, trial	miscenaneous	basic, games, gaming, stuff, trial

Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

AAL - Experiments (11/11)

Case Study be put Attention Visualization off by anothe reviewen extremely negative Example: reviev Do n't be put off by another reviewer's extremely negative reviews! Do n't



Aspect Aware Learning for Aspect Category Sentiment Analysis (TKDD19)

Enhanced Aspect Level Sentiment Classification with Auxiliary Memory

Peisong Zhu, Tieyun Qian* School of Computer Science, WuHan University, China {zhups24, qty}@whu.edu.cn

> Published at COLING 2018 (Research Long Paper)

Enhanced Aspect Level Sentiment Classification with Auxiliary Memory (COLING18)

DAuM - Motivations(1/9)

- For term-based ASC, it's hard to train high-quality embeddings for the terms with low frequency.
- For category-based ASC, categories do not explicitly occur in sentences, thus it is hard for a model to capture aspect related context words from the sentence.
- The terms and categories in ASC are closely related to each other. Existing methods fail to utilize the relevance between them because only very few datasets are annotated with both labels.

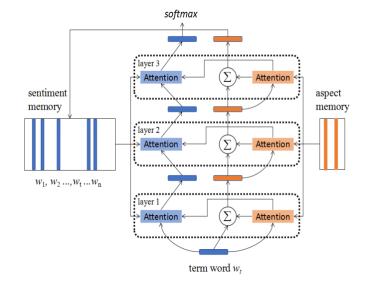
2019/12/15

DAuM - Architecture_(2/9)

DAuM Overview

Deep memory network with an Auxiliary Memory

- Auxiliary Memory : Generate corresponding category embeddings for given terms, vice versa.
- Sentiment Memory : Both original and generated embeddings are fed into sentiment memory to collect relative information from context.



DAuM - Architecture(3/9)

(1) Auxiliary Memory (e.g. term => category)

- ► Initialized memory: m_i
- Generate category
 - $u_i = m_i \cdot W_a \cdot v_t$ $\alpha_i = \frac{exp(u_i)}{\sum_{j=1}^k exp(u_j)} \qquad o_a = \sum_{i=1}^k m_i \alpha_i$

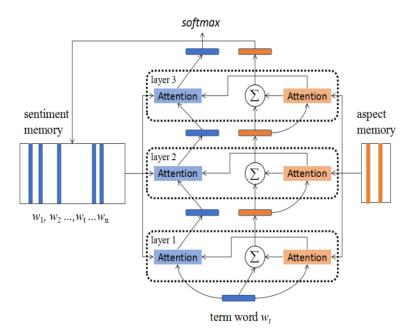
(2) Sentiment Memory

- **•** Term attention $\beta_i^t = softmax(tanh(W_s^t[x_i; v_t] + b_s^t))$
- Category attention $\beta_i^a = softmax(tanh(W_s^a[x_i; o_a] + b_s^a))$
- Aggregation

$$\beta = (1 - \lambda)\beta^t + \lambda\beta$$

$$o_s = \sum_{i=1}^n x_i \beta_i$$

stack to multiple layers...



DAuM - Architecture_(4/9)

Loss Function

Sentiment Prediction

$$P_c(s, w_t) = softmax(W_c o_s^f + b_c) \qquad \qquad L_{cla} = -\sum_{(s, w_t) \in T} \sum_{c \in C} y_c(s, w_t) \cdot log P_c(s, w_t)$$

Semantic Relatedness (term & category) Regularization

 $L_{pre} = \sum_{(s,w_t)\in T} \sum_{i\in\{1...n\}/\{t\}} \max(0, 1 - o_a^f \cdot W_p \cdot v_t + o_a^f \cdot W_p \cdot x_i)$

Category Embedding Regularization

 $L_{reg} = \|M_a M_a^T - I\|$

 $L_{final} = L_{cla} + \gamma_1 L_{pre} + \gamma_2 L_{reg}$

Enhanced Aspect Level Sentiment Classification with Auxiliary Memory (COLING18)

DAuM - Experiments (5/9)

Datasets

SemEval 2014, SemEval 2016

	Dataset	Set	Total	Pos.	Neg.	Neu.
		Train	2927	1806	697	424
Category-based	Restaurants(ASC)	Test	973	657	222	94
		Dev	591	372	142	77
		Train	3017	1806	669	542
Term-based	Restaurants(TSC)	Test	1120	728	196	196
		Dev	591	358	138	95
		Train	1934	823	730	381
	Laptops	Test	638	341	128	169
		Dev	394	171	140	63
		Train	2416	627	1163	626
	TweetNews	Test	1249	303	716	230
		Dev	498	125	233	140

DAuM - Experiments (6/9)

Results

Term-based

Category-based

		Restaurants	s(TSC)		Laptops				
Method	Accuracy	Precision	Recall	F-score	Accuracy	Precision	Recall	F-score	
ContextAVG	75.09	68.93	62.91	63.96	67.24	65.56	60.96	61.86	
LSTM	74.28	68.72	61.89	62.21	66.46	65.04	60.54	61.72	
TD-LSTM	75.63	69.18	63.05	64.16	68.18	66.86	61.15	62.28	
AE-LSTM	76.25	69.76	63.21	64.32	68.97	67.12	61.32	62.50	
ATAE-LSTM	77.23	70.83	63.95	64.95	68.65	66.98	61.18	62.45	
MemNN	80.09	72.10	65.68	67.82	72.21	70.82	65.03	66.75	
DAuM	82.32	74.68	70.18	71.45	74.45	72.96	69.21	70.16	

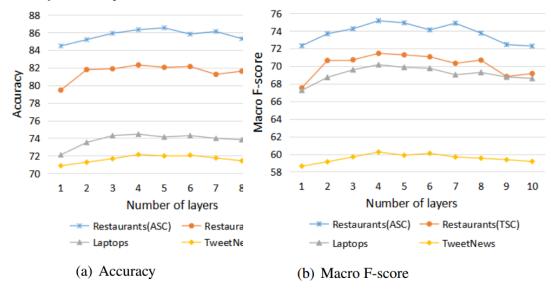
		Restaurants	(ASC)		TweetNews				
Method	Accuracy	Precision	Recall	F-score	Accuracy	Precision	Recall	F-score	
ContextAVG	80.37	72.86	67.58	68.72	65.25	57.52	51.96	52.88	
LSTM	82.01	74.20	69.16	70.20	66.86	58.76	53.12	54.32	
AE-LSTM	82.53	74.56	69.36	70.48	69.42	60.96	55.18	56.28	
ATAE-LSTM	83.98	75.92	70.88	71.76	69.58	61.10	55.45	56.72	
TAN	82.53	74.48	69.50	70.55	68.78	60.42	55.06	56.25	
MemNN	84.28	76.06	70.24	72.38	70.14	62.21	57.05	58.62	
DAuM	86.33	77.54	73.82	75.16	72.14	64.52	58.96	60.24	

Enhanced Aspect Level Sentiment Classification with Auxiliary Memory (COLING18) 52

DAuM - Experiments (7/9)

Parameter Analysis

Effects of Multiple Layers

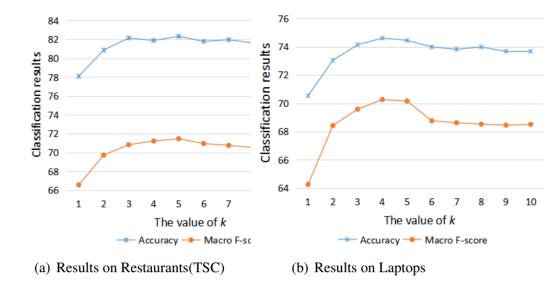


Enhanced Aspect Level Sentiment Classification with Auxiliary Memory (COLING18)

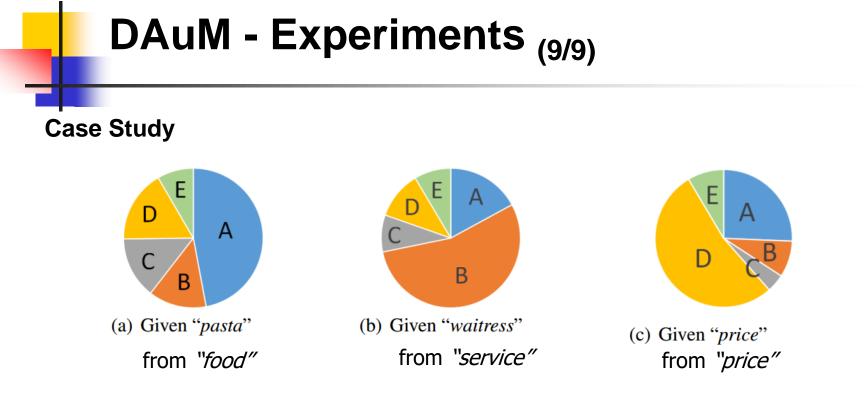
DAuM - Experiments (8/9)

Parameter Analysis

Effects of Aspect Number k



Enhanced Aspect Level Sentiment Classification with Auxiliary Memory (COLING18)



Outline User Generated Data

An overview on Sentiment Analysis

An overview on Recommender Systems

Our Work

Our Work Sentiment analysis

- Recommender systems
- User profiling
- Representation learning

Spatiotemporal Representation Learning for Translation-Based POI Recommendation

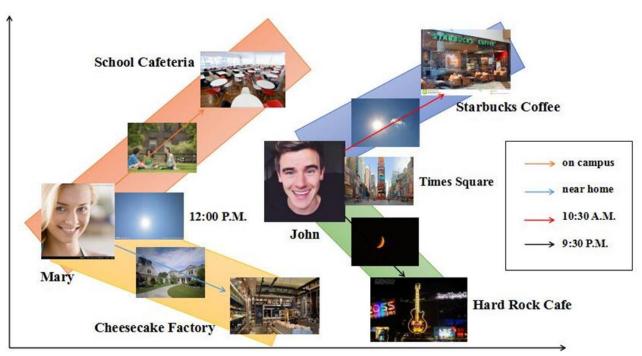
Tieyun Qian¹, Bei Liu¹, Quoc Viet Hung Nguyen², Hongzhi Yin³,

¹Wuhan University, ²Griffith University, ³The University of Queensland

> Published at TOIS 2019 (Regular Research Paper)

Problems in POI recommendation (1/12)

- Highly spatio- and temporal- sensitive
- Cold start



STL – Main Contributions (2/12)

- We adopt the translation-based knowledge graph embedding techniques to model the spatiotemporal effects in POI recommendation. The joint modeling of spatiotemporal information also distinguishes our work from existing studies which consider these information in a separate way.
- We propose a new type of cold-start problem, cold-start spatiotemporal contexts, and develop effective methods to exploit and integrate various correlation information into the representation learning of cold-start users, items and spatiotemporal contexts to address cold start problems

STL – Proposed Model (3/12)

Basic idea:

We represent the spatiotemporal context < t, / > as a type of relation such that it captures the user's check-in behaviors at the specific time and location

"Mary + 12:00 P.M. on campus \Rightarrow School Cafeteria" "Mary + 12:00 P.M. near home \Rightarrow Cheesecake Factory" and "John + 10:20 A M. Times Square \Rightarrow Starbucks Coffee"

"John + 10:30 A.M. Times Square ⇒ Starbucks Coffee" "John + 9:30 P.M. Times Square ⇒ Hard Rock Cafe"

A user *u* will reach an interested POI *va* via a translation edge *t*/

 $\vec{u} + \vec{tl} \approx \vec{v_q}$

STL – Proposed Model (4/12)

Dealing with cold start check-ins:

The cold-start spatial-temporal contexts refer to those new time-location pairs that have never appeared in the training dataset. Almost all individual spatial and temporal contexts are not new although their combinations are cold start.

We leverage the contexts for finding its nearest and farthest neighbors based on their spatial and temporal similarity.

$$sim_t(t_i, t_j) = \frac{\sum_{u \in U} \frac{\vec{a}_i \cdot \vec{a}_j}{||\vec{a}_i||_2 ||\vec{a}_j||_2}}{|U|}, \quad sim_l(l_i, l_j) = a * (d(l_i, l_j))^b,$$

$$sim_{tl}(\tau_i, \tau_j) = \alpha_1 \cdot sim_t(t_i, t_j) + \alpha_2 \cdot sim_l(l_i, l_j),$$

Spatiotemporal Representation Learning for Translation-Based POI Recommendation (TOIS 2019)

STL – Proposed Model (5/12)

Dealing with cold start users

We propose two geo-social correlation measures to incorporate a user's social and geographical contexts.

$$sim_u(u_q, u_k) = \lambda_1 \cdot sim_{soc}(u_q, u_k) + \lambda_2 \cdot sim_{qeo}(u_q, u_k)$$

We employ the normalized ratio of common friends in two users' social circles as the similarity metric of social influence.

$$sim_{soc}(u_q, u_k) = \frac{|N(u_q) \cap N(u_k)| + 1}{\sum_{k=1}^{k=|N(u_q)|} (|N(u_q) \cap N(u_k)| + 1)},$$

The geographical similarity simgeo is similar to the definition in *siml*.

Spatiotemporal Representation Learning for Translation-Based POI Recommendation (TOIS 2019)

STL – Proposed Model (6/12)

Dealing with cold start POIs:

We propose two geo-semantic correlation measures to incorporate the semantic and geographical contexts of a POI.

$$sim_p(p_q, p_k) = \gamma_1 \cdot sim_{sem}(p_q, p_k) + \gamma_2 \cdot sim_{geo}(p_q, p_k)$$

The semantic similarity *simsem* is defined as the Jaccard coefficient between the tag set T(pq) and T(pk) for POI pq and pk

$$sim_{sem}(p_q, p_k) = \frac{|T(p_q) \cap T(p_k)|}{|T(p_q) \cup T(p_k)|}$$

Spatiotemporal Representation Learning for Translation-Based POI Recommendation (TOIS 2019)

STL – Evaluation (7/12)

We evaluate our methods on two real-life LBSN datasets: Foursquare and Gowalla

	Foursquare	Gowalla
# of users	114,508	107,092
# of POIs	62,462	1,280,969
# of check-ins	1,434,668	6,442,892
#std time slots	24	24
# of locations	5,846	200
# of $< t, l >$ contexts	28,868	3,636

Table 2. Statistics of Two Datasets

STL – Evaluation (8/12)

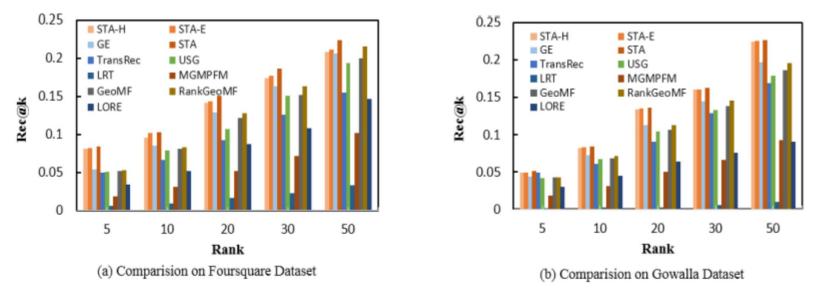
We compare our STA with 10 POI recommendation. They represent the state-of-the-art methods:

firstly, they cover four types of popular recommendation techniques, i.e., collaborative filtering, matrix factorization, distributed representation, and hybrid model;

secondly, they consider six important factors that influence user decision-making for choosing POIs, including user preference, temporal, geographical, social, content, and sequential influence.

STL – Evaluation (9/12)

Comparison Results



STL – Evaluation (10/12)

Comparison Results

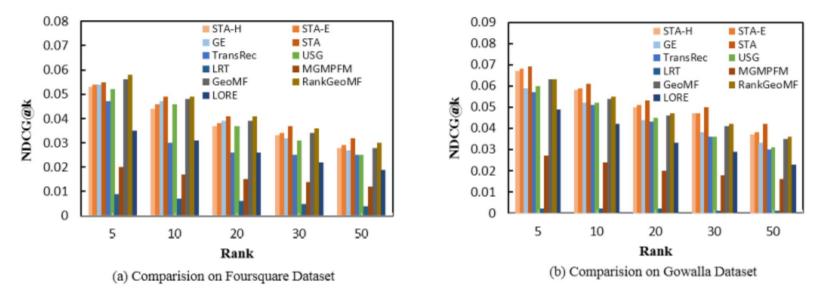
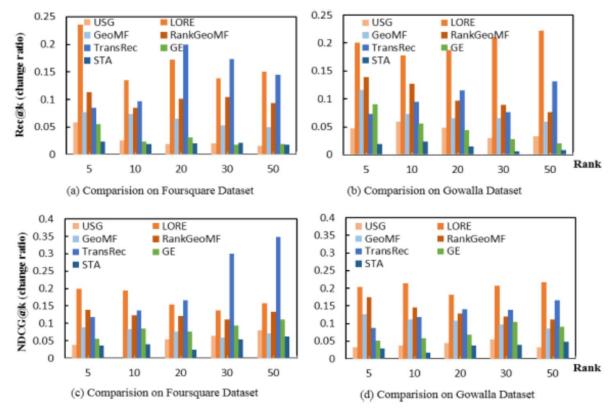


Fig. 3. Comparisons with the baselines on the two datasets in terms of NDCG@K.

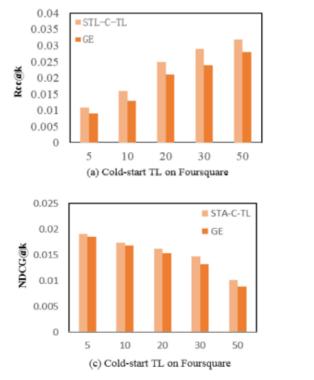
STL – Evaluation (11/12)

Sensitivity to data sparsity



STL – Evaluation (12/12)

Results in cold-start scenario



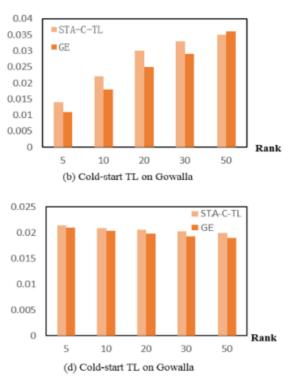


Fig. 5. Test for cold-start spatiotemporal contexts.

What Can History Tell Us? Identifying Relevant Sessions for Next-Item Recommendation

Ke Sun¹, Tieyun Qian¹, Hongzhi Yin², Tong Chen², Yiqi Chen¹, Ling Chen³

¹Wuhan University, ²University of Queensland, ³University of Technology, Sydney

> Published at CIKM 2019 (Research Long Paper)

Background

- Sequential recommendation
 - Modelling sequential dependencies of user-item interactions.
- Session-based recommendation
 - > A subtask of sequential recommendation.
 - User transaction sequence is partitioned into sessions.

What Can History Tell Us? Identifying Relevant Sessions for Next-Item Recommendation (CIKM 2019)

Motivation

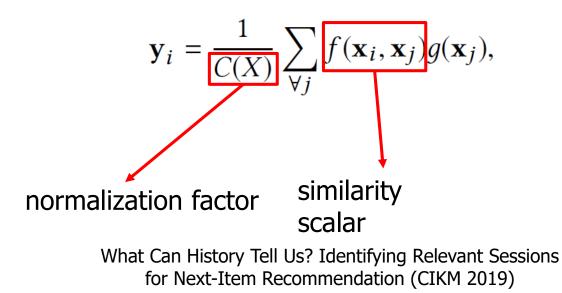
- Limitations of existing sequential methods:
 - > Ignore long-term user preferences. (Fig. a)
 - Consider all historical sessions without any distinction.
 (Fig. b)

Our Contributions

 We propose a novel deep learning based sequential recommender framework for session-based recommendation by integrating both long-term and short-term user preferences in a unified way.

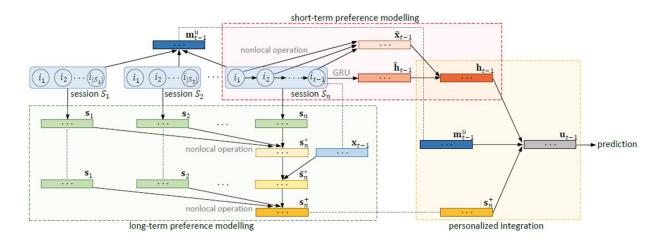
Problem and Preliminary

- Problem Definition: Given a historical session sequence {S₁, ..., S_{n-1}} and current session S_n = {i₁, ..., i_{t-1}} of u, predict i_t.
- Preliminary: nonlocal structure



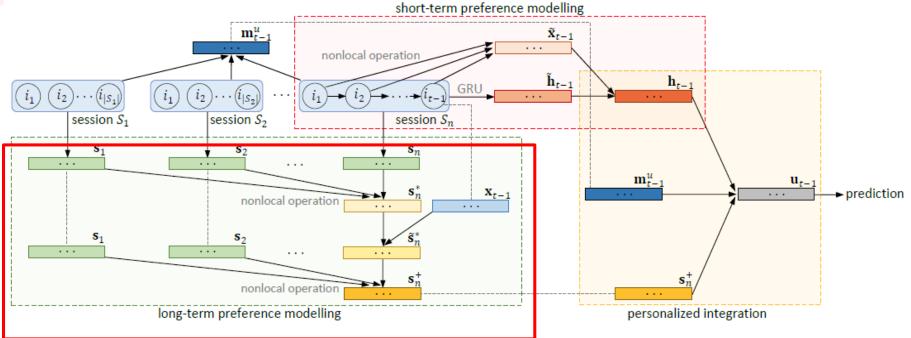
Architecture

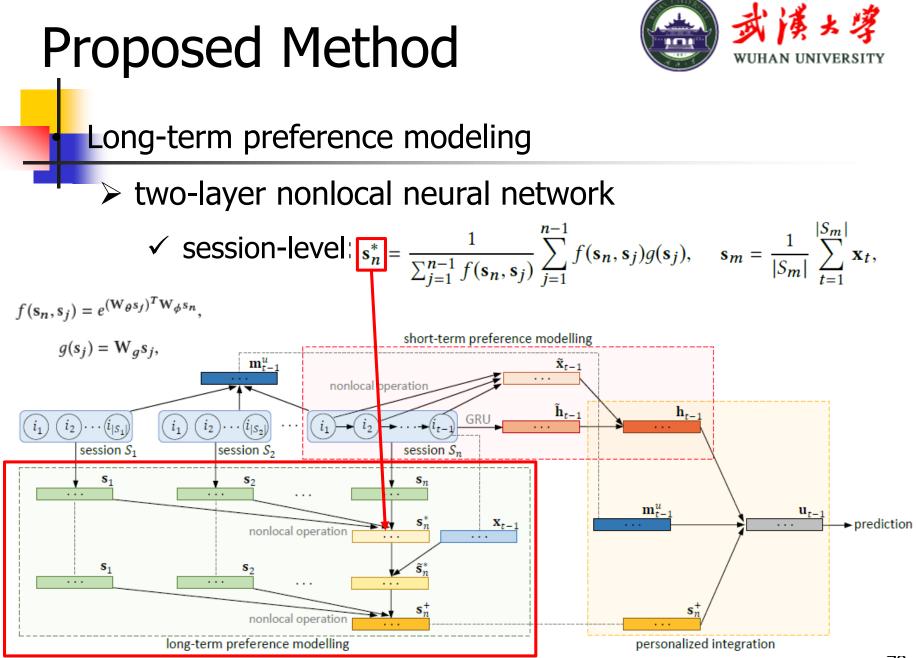
- We design a two-layer nonlocal architecture to learn long-term user preferences from relevant historical sessions
- We integrate the nonlocal structure with a gated recurrent unit (GRU) to learn short-term user preferences.



- Long-term preference modeling
 - two-layer nonlocal neural network

$$\checkmark \text{ session-level: } \mathbf{s}_n^* = \frac{1}{\sum_{j=1}^{n-1} f(\mathbf{s}_n, \mathbf{s}_j)} \sum_{j=1}^{n-1} f(\mathbf{s}_n, \mathbf{s}_j) g(\mathbf{s}_j), \quad \mathbf{s}_m = \frac{1}{|S_m|} \sum_{t=1}^{|S_m|} \mathbf{x}_t,$$

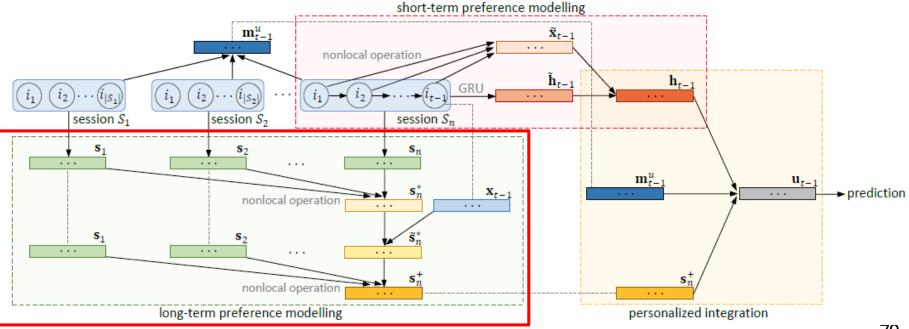


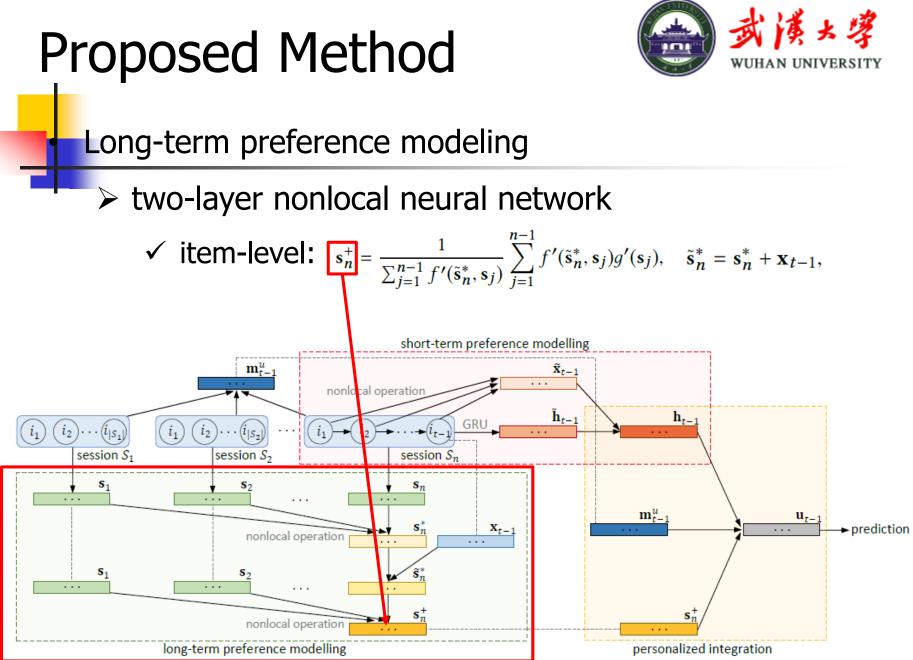


Long-term preference modeling

two-layer nonlocal neural network

✓ item-level:
$$\mathbf{s}_n^+ = \frac{1}{\sum_{j=1}^{n-1} f'(\tilde{\mathbf{s}}_n^*, \mathbf{s}_j)} \sum_{j=1}^{n-1} f'(\tilde{\mathbf{s}}_n^*, \mathbf{s}_j) g'(\mathbf{s}_j), \quad \tilde{\mathbf{s}}_n^* = \mathbf{s}_n^* + \mathbf{x}_{t-1},$$

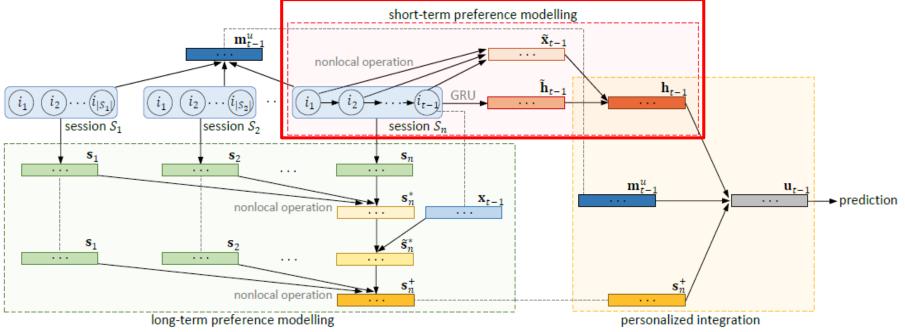


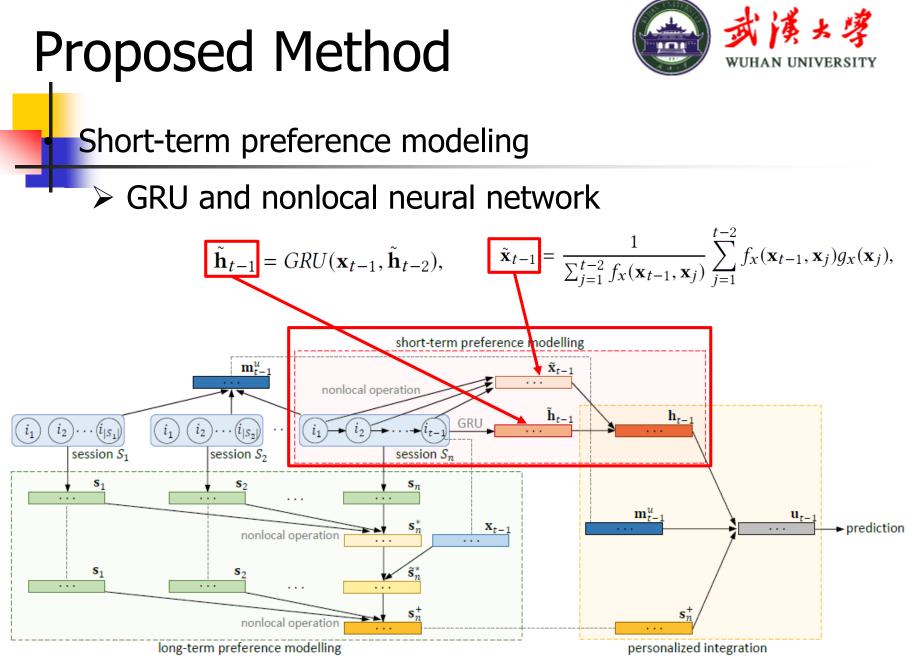


Short-term preference modeling

GRU and nonlocal neural network

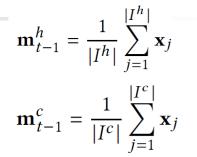
$$\tilde{\mathbf{h}}_{t-1} = GRU(\mathbf{x}_{t-1}, \tilde{\mathbf{h}}_{t-2}), \qquad \tilde{\mathbf{x}}_{t-1} = \frac{1}{\sum_{j=1}^{t-2} f_x(\mathbf{x}_{t-1}, \mathbf{x}_j)} \sum_{j=1}^{t-2} f_x(\mathbf{x}_{t-1}, \mathbf{x}_j) g_x(\mathbf{x}_j),$$

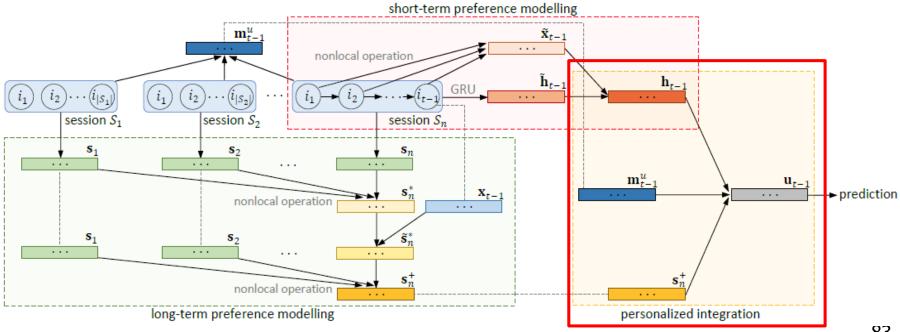




Personalized Integration

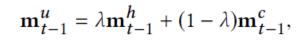
- historical representation
- current representation

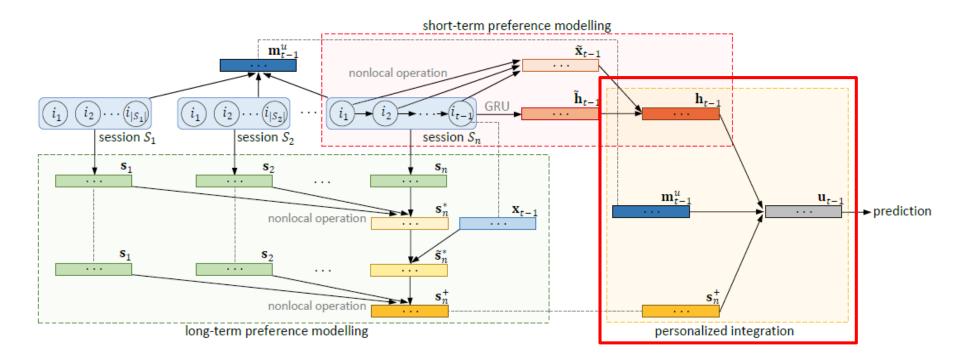


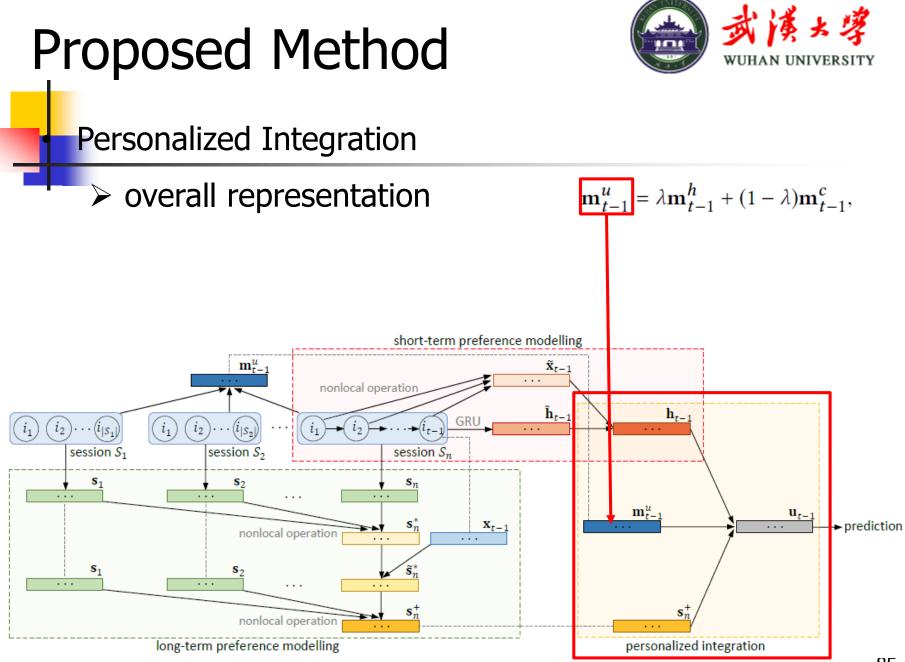


Personalized Integration

overall representation



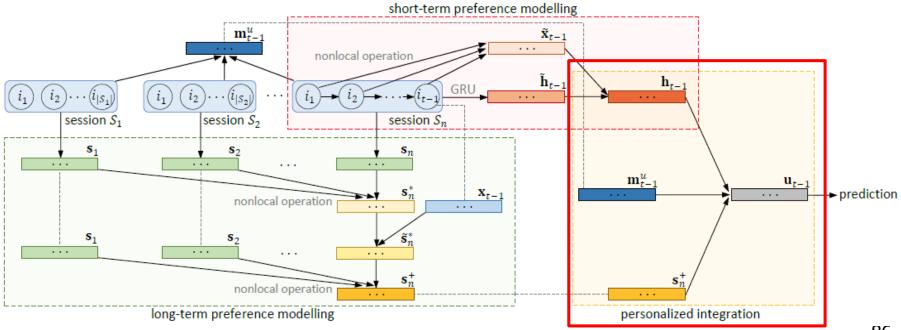


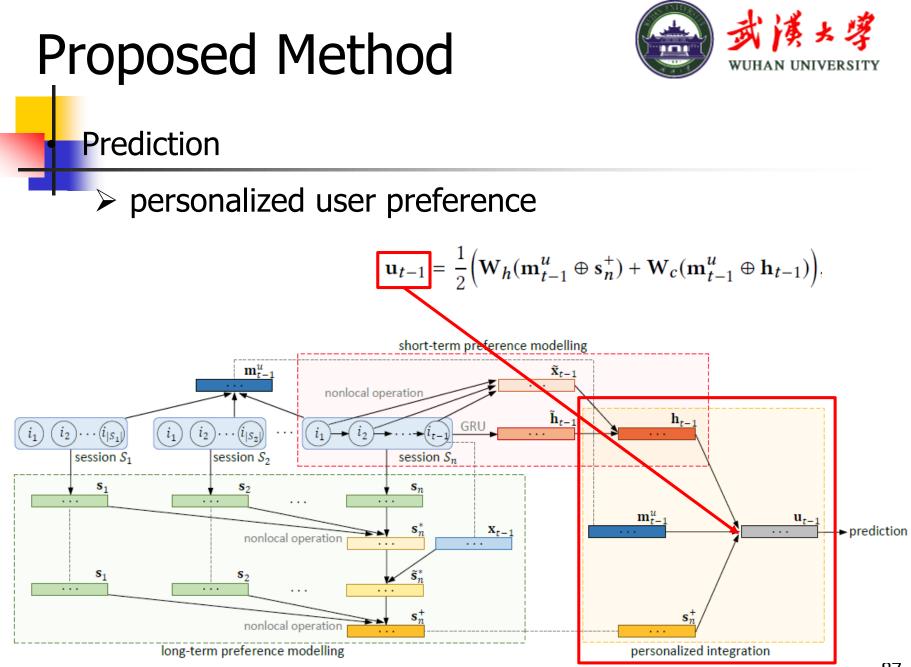


Prediction

> personalized user preference

$$\mathbf{u}_{t-1} = \frac{1}{2} \Big(\mathbf{W}_h(\mathbf{m}_{t-1}^u \oplus \mathbf{s}_n^+) + \mathbf{W}_c(\mathbf{m}_{t-1}^u \oplus \mathbf{h}_{t-1}) \Big)$$





- Dataset
 - Tmall (an E-commerce dataset)
 - Gowalla (a Point-Of-Interest recommendation dataset)
- Evaluation
 - ➢ Recall

> MRR

Statistic	Tmall	Gowalla
#user	36,595	14,898
#item	26,576	15,291
avg. session length	2.903	3.267
#train session	105,560	166,683
#test session	35,613	14,892

Baseline methods

- > POP
- ➢ Fossil [He et al, ICDM2016]
- ➢ GRU4Rec [Hidasi et al, ICLR2015]
- > NARM [Li et al, CIKM2017]
- ➢ STAMP [Liu et al, KDD2018]
- > HRNN [Quadrana et al, RecSys201]7]
- ➢ SHAN [Ying et al, IJCAI2018]
- ➢ BINN [Li et al, KDD2018]

Consider short-term preference only

Consider both long and short-term preferences

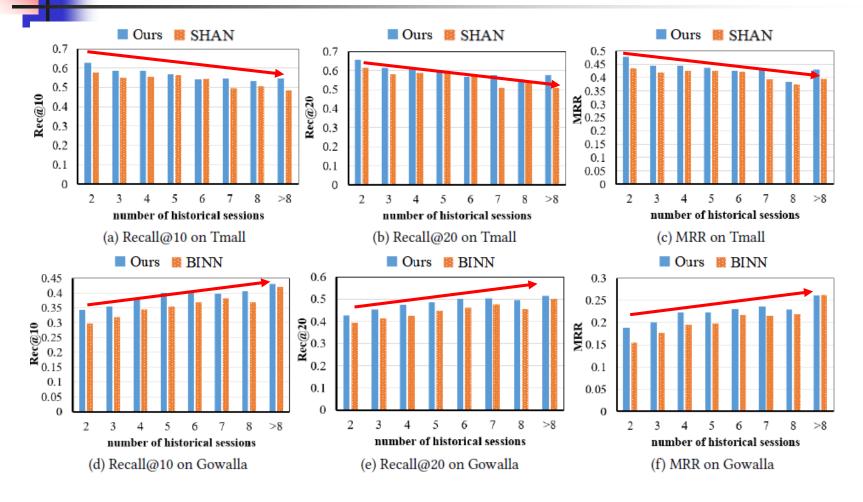
• Overall Performance

Short-term preference is more important in Tmall dataset.

> Long-term preference is more important in Gowalla dataset.

Method	Tmall			Gowalla		
	Rec@10	Rec@20	MRR	Rec@10	Rec@20	MRR
POP	0.0213	0.0339	0.0085	0.0424	0.0638	0.0155
Fossil	0.1251	0.1523	0.0647	0.0894	0.1189	0.0342
HRNN	0.5200	0.5520	0.3973	0.1615	0.2015	0.0853
GRU4Rec	0.5736	0.6014	0.4601	0.3183	0.3820	0.1889
NARM	0.6117	0.6450	0.4683	0.3607	0.4441	0.2003
STAMP	0.6112	0.6442	0.4643	0.3395	0.4189	0.1805
SHAN	0.5834	0.6123	0.4409	0.3421	0.4214	0.1942
BINN	0.5312	0.5775	0.3896	0.3679	0.4549	0.2146
Ours	0.6228	0.6530	0.4757	0.3954	0.4844	0.2301

Impact of Different User History Lengths



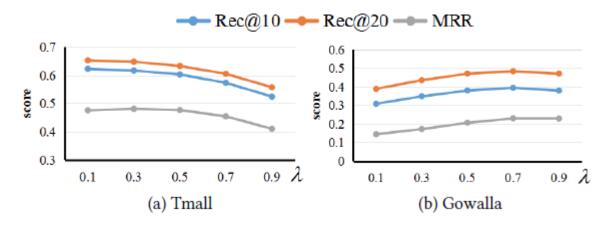
Analysis on Different Model Components

- Remove-LT: No long-term preference
- Remove-ST: No short-term preference
- Remove-PI: No personalized integration

Dataset	Method	Rec@10	Rec@20	MRR
Tmall	Default	0.6228	0.6530	0.4757
	Remove-LT	0.5827↓	0.6099↓	0.4704↓
	Remove-ST	0.5858↓	0.6135↓	0.4711↓
	Remove-PI	0.5768↓	0.6116↓	0.4362↓
Gowalla	Default	0.3954	0.4844	0.2301
	Remove-LT	0.3618↓	0.4470↓	0.2178↓
	Remove-ST	0.3813↓	0.4666↓	0.2252↓
	Remove-PI	0.3404↓	0.4255↓	0.1802↓

Analysis on Hyperparameter λ

- > Tmall: performance decreases when the value of λ grows.
- > Gowalla: performance increases when the value of λ grows.



Conclusion

- We design a two-layer nonlocal neural network to precisely capture user's long-term preferences.
- We deploy the GRU network coupled with a nonlocal structure to model short-term preferences.
- We present a personalized strategy to adaptively combine the learned long and short-term preferences.

Our work on sentiment analysis

Zhuang Chen, Tieyun Qian. Transfer Capsule Network for Aspect Level Sentiment Classification. ACL, pp 547-556, 2019.

Peisong Zhu, Zhuang Chen, Haojie Zheng, Tieyun Qian. Aspect Aware Learning for Aspect Category Sentiment Analysis. ACM Transactions on Knowledge Discovery from Data (TKDD), 13 (6), 2019.

Peisong Zhu, Tieyun Qian. Enhanced Aspect Level Sentiment Classification with Auxiliary Memory. COLING. 2018, pp 1077-1088.

Yunkai Yang, Tieyun Qian, Zhuang Chen. Aspect-Level Sentiment Classification with Dependency Rules and Dual Attention. ICONIP (2) 2019: 643-655.

Our work on recommender systems

Ke Sun, Tieyun Qian, Tong Chen, Yile Liang, Quoc Viet Hung Nguyen, Hongzhi Yin. Where to Go Next: Modeling Long- and Short-Term User Preferences for Point-of-Interest Recommendation. AAAI 2020, accepted.

Tieyun Qian, Bei Liu, Quoc Viet Hung Nguyen, and Hongzhi Yin. 2019. Spatiotemporal Representation Learning for Translation-Based POI Recommendation. ACM Trans. Inf. Syst. (TOIS) 37, 2, Article 18, 2019

Ke Sun, Tieyun Qian, Hongzhi Yin, Tong Chen, Yiqi Chen, Ling Chen. What Can History Tell Us? Identifying Relevant Sessions for Next-Item Recommendation. CIKM, 2019: 1593-1602.

Yile Liang, Tieyun Qian, Huilin Yu. Align Reviews with Topics for Rating Prediction. DASFAA 2019, DASFAA (3) 2019: 249-253

Sourcecode available at:

https://github.com/NLPWM-WHU



Thank you!

Any questions?